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\ SUMMARY

Approximate analytical relations are developed
for several possible '"conical" flow fields resulting from
the steady supersonic flow of a uniform, non-~viscous, non-
heat conducting, combustible-gas mixture past a semi-
infinite cone (at zero angle of attack) for instantaneous
chemical reaction. The flow fields considered are of the
shock-deflagration, detonation, and detonation-shock types
with attached adiabatic and diabatic discontinuities.
Particular emphasis is placed upon the Chapman-Jouguet
detonation.

Parametric curves are presented for shock-
deflagration flows about cones and wedges, and Chapman-
Jouguet detonative flows about cones.

Generalized analyses of the flow characteristics
of an oblique exothermic discontinuity are given in the

appendices.
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Q/cpT

SYMBOLS -

local speed of sound

normalized local speed of sound, a/c
maximum speed obtainable by adiabatically
expanding into a vacuum (constant for any
given region 0,1,2, etc.) ¢ = \fi;i?7?;313
constants defined following Eq. (7)

functions defined respectively by Eqs. (B4)
and (B6)

specific heat at constant pressure
specific heat at constant volume

cot ws

cot P,

local Mach number, V/a

component of local Mach number normal to a
conical ray, v/a (see Fig. 2)

static pressure

total pressure

mechanical equivalent of heat added per unit

mass of fluid (ft-1lb/slug, or other consistent

units)
heat-addition parameter (Damkohler's second

parameter)
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Ql,ﬂz,etc.

SYMBOLS (cont'd)

gas constant

static temperature

velocity components parallel and perpendicular
respectively to a conical ray (see Fig. 2)
normalized velocity components, u/c, v/c

local resultant velocity, u2 + v2

free-stream velocity

(r - 1)/2

ratio of specific heats, cp/cv

local flow inclination relative to free-
stream direction (see Fig. 2)

mass density

total temperature

spherical or polar angle (see Fig. 2)

the maximum body semi-apex angle for which
a conical flow region can exist for a given
free-stream Mach number and heat release
body semi-apex angle corresponding to a
surface Mach number of unity

functions of y defined in Appendix C
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0,1,2,etc.

Subscripts

denotes a constant-

value quantity in the

particular region (see Fig. 1) indicated

by the subscript
denotes conditions
denotes conditions
denotes conditions
discontinuity
denotes conditions

denotes conditions

at the body surface
at a detonation wave

at any general exothermic

at a deflagration wave

at, or pertaining to, a

Chapman-Jouguet detonation

denotes conditions

denotes conditions

at a singular discontinuity

at an adiabatic shock wave

denotes juncture point of inner and outer

solutions for the unit field

see statement following Eq. (Blb)

see statement following Eq. (B6)

Superscripts

indicates a variable quantity in region O

(see Fig. 1)

indicates a variable quantity in region 1

(see Fig. 1)
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(o)

Superscripts (cont'd)

indicates a variable quantity in region 2
(see Fig. 1)

denotes conditions corresponding to a
Chapman-Jouguet detonation

see statement preceeding Eq. (B9)

. -
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INTRODUCTION

Although supersonic combustion in the form of
a non-stationary Chapman-Jouguet detonation propagating
through a tube filled with a combustible gas has been
studied by combustion scientists for about eighty years
(Refs. 1 and 2), it is only in recent times that experi-
mental investigations have been conducted on supersonic
combustion processes which are stationary with respect
to an aerodynamic body, a fuel injection nozzle, or an
exhaust nozzle (see, for example, Refs. 3 through 8).
The motivation for the increased research activity in
supersonic combustion stems from recent analyses of hyper-
sonic ramjets utilizing supersonic combustions (Refs. 9,
10, and 11), proposals for detonative propulsion engines
(Refs. 12 and 13), and studies of unconventional supersonic
aircraft utilizing external burning for 1lift and for
propulsion (Refs. 14 and 15). Hence, there are now
practical as well as fundamental reasons for obtaining a
more complete understanding of supersonic combustion
processes.,

It is observed, with regard to the detonative
supersonic combustion experiments of Refs. 4, 5, and 6 that
blunt bodies are more conducive to initiating shock-induced

combustion than pointed ones because of the relatively higher
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static temperature behind the normal shock. On the other
hand, it seems only logical that greater dividends are
derived from experimental investigations performed on con-
figurations amenable to analytical calculation., A wedge

is much more satisfactory in this respect than a blunt body.
A cone, however, is not only amenable to analytical calcula-
tion (at least for the idealized case of instantaneous
chemical reaction) but also represents a configuration which
is adaptable either to the technique of firing in a gas-
filled ballistic range or to stationary testing in a com-
bustion wind tunnel. This overlapping of available testing
techniques can hardly fail to be rewarding. Also, a cone

is free of the end effects encountered on a finite-span
wedge. A wedge has the advantage, however, of producing a
stronger shock than a cone for a given apex angle and free-
stream Mach number. Experimentally this can be compensated
for in cone tests by increasing the temperature of the
ambient gas in the tunnel or ranée.

This paper presents approximate analytical rela-
tions for several possible "conical" flow fields resulting
from the steady supersonic flow of a uniform, non-viscous,
non-heat conducting, combustible-gas mixture past a semi-
infinite cone (at zero angle of attack) for instantaneous

chemical reaction. Aside from its fundamental aspects, the
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primary purpose of the paper is to present material which
it is hoped will be useful in the design and interpreta-~
tion of cone~flow supersonic combustion experiments aimed
at obtaining a better understanding of the basic phenomena
involved in supersonic combustion.

It appears that the only other theoretical work
dealing with non-linear diabatic cone-flow fields is that
of Kvashnina and Chernyi (Ref. 16). Kvashnina and Chernyi,
without recourse to numerical calculation, deduce from an
examination of the hodograph differential equation, the
detonation hodograph, and the cone boundary condition, the
general character of the flow field for the flow of a super-
sonic gas stream past a solid cone with an attached detona-
tion wave and varying amounts of heat release.

Although supersonic combustion flow about a cone
is the main topic of this paper, some numerical results for
wedge combustion flow fields are included as a matter of

interest.

GENERAL DESCRIPTION OF SOME POSSIBLE
CONICAL FLOW REGIMES FOR INSTANTANEOUS
CHEMICAL REACTION

The assumption of instantaneous chemical reaction
allows a combustion zone (detonation or deflagration) to be

treated as an exothermic surface of infinitesmal thickness
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across which the flow properties and chemical compositious
are discontinuous., An illustration showing some possible
theoretical supersonic conical flow fields with an exothermic
discontinuity appears in Fig. 1. The detailed notation,
applied to a particular case of Fig. 1, is illustrated in
Fig. 2., The adiabatic shocks appearing in Fig. 1 are

assumed not to produce a change in the specific heats or

in chemical composition. The different chemical compositions
in the regions upstream and downstream of an exothermic dis-
continuity are frozen throughout their respective fields and
the gas is assumed to be calorically and thermally perfect
throughout a given region although it experiences an instan-
taneous change in the specific heats in crossing an exothermic
discontinuity. The bounded flow fields between discontinuities
(shocks, deflagrations, detonations, and bodies) are conical
in the sense that the flow properties are constant along
straight line elements emanating from the apex of the body.
This is representative of the flow field for a chemically
reacting mixture with finite reaction time in the region far
away from the apex. 1In the vicinity of the apex, for
distances of the order of the chemical relaxation distance,
the flow will not be conical. The reduction of the flow
problem to one involving conical fields represents a con-

siderable simplification in the analytical task.
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For an ambient stream of a given chemical com-
position the consequences of the chemical reactions are
implicitly included in the aerothermodynamic parameters
of the oblique exothermic discontinuity relations given
in Appendix A, Since it is beyond the scope of this
paper to treat the thermochemical aspects of the flow in
detail, those quantities which would be determinate 1if the
governing thermochemical relations were included are
assumed to be known "a priori'., These include, the heat
release, the specific heats downstream, and the normal-
component Mach number upstream of the exothermic dis-
continuity.

The oblique exothermic discontinuities shown in
Fig. 1 are classified by applying Jouguet's rule (Ref, 17)
for one-dimensional reactive flow to the normal components
of the upstream and downstream Mach numbers at the dis-
continuity. Hence, immediately ahead of aii oblique exothermic
discontinuity the normal Mach-number component relative to
the discontinuity is subsonic for a deflagration and super-
sonic for a detonation. The downstream normal Mach-number
component is subsonic for a weak deflagration or a strong
detonation, and supersonic for a strong deflagration or a
weak detonation. Oblique Chapman-Jouguet deflagrations and
detonations are those for which the downstream normal Mach-

number component is unity.

10
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The use of the adjectives "strong" and '"weak" in
the foregoing classification leads to an ambiguity in termi-
nology if the traditional method of describing an oblique
adiabatic shock due to a cone or wedge as strong or weak in
acggrwance with the magnitude of its inclination angle is
carried over to the diabatic shock case, since, in a manner
analogous to adiabatic flow, two detonation-wave angles are
obtained for a cone or wedge at a given free-stream Mach
number, and a given detonative-wave heat release. The
ambiguity1 is avoided by designating the detonation wave
with the larger inclination as "strongly inclined" and the
one with the lesser inclination as "weakly inclined". Hence,
an oblique strong detonation may be a weakly-inclined strong
detonation or a strongly-inc%}ned strong detonation. Similar
descriptions are applied to weak detonations and to C-J
detonations.

It can be shown from entropy considerations
(Ref. 17) that strong deflagrations are impossible. For one-
dimensional detonations, the literature is controversial
(Refs. 1 and 2) regarding the theoretical existence of non

C-J detonations, although the preponderant opinion seems

1This situation does not occur for oblique adiabatic shocks
with constant specific heats, since consideration is never
given to classifying such shocks in terms of their normal-
flow properties because the normal-flow weak solution yields
the result that "nothing happens" see Eq. (A6).

11
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to be that Chapman-Jouguet detonations are the most probable,
and that strong detonations are more probable than weak ones.
For plane (wedge) flow, Siestrunch and associates (Ref. 18)
have theoretically demonstrated the impossibility of weak
detonations from an examination of the detonation polar
without recourse to entropy considerations., For cylindrical
(cone) flow Kvashnina and Chernyi (Ref. 16) imply the non-
existence of weak detonations. In any case, the present
analysis is generally confined to weak deflagrations, strong
detonations, and Chapman-Jouguet detonations all having weak
inclination angles. The restriction to weak inclinations
follows by analogy to oblique adiabatic shocks for which only
weak inclinations are observed in physical reality.

For plane flow, the shock-deflagration and the
detonation flow regimes shown in Fig. 1 have been analyzed
previously in Refs. 19 and 20, and Refs. 16, 21, and 22
respectively. A relatively superficial examination of the
problem is sufficient to convince one's self that there
also exist cylindrical flows having the same general
character, although the field details differ in that for
cylindrical flows, the pressure increases in the downstream
direction along curved streamlines in bounded conical-flow
regions, whereas for plane flows the pressure is constant

on straight streamlines in bounded conical-flow regions.

12
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For the detonative type flows it is pertinent to
note that there are two particular values of the body semi-
apex angle wB (for both cones and wedges) which are crucial
to the delineation of the detonative-flow regimes shown in
Fig. 1. For given values of the free-stream Mach number,
specific heats, and heat release at the detonation wave,

there exists a maximum body semi-apex angle % above
max

which a conical flow (plane or cylindrical) cannot exist,
i.e., the wave becomes detached, and there exists also a

semi-apex angle s . ¥ > %g s at which the detonation
J max J

wave becomes a Chapman-Jouguet detonation. For body semi-

apex angles less than °g but greater than QB the flow
max J

equations yield two solutions, as previously noted, one of
which corresponds to a strongly-inclined detonation wave and
the other to a weakly-inclined detonation wave. For body

semi-apex angles less than ?g the detonative wave angle
J

remains at 9?5 and an expansion region occurs downstream of
the detonation wave. This expansion region has a different
character for plane and cylindrical flows. For plane flow,
the expansion region is simply a Prandtl-Meyer expansion of
sufficient extent to turn the flow parallel to the body
surface. For cylindrical flow, Kvashnina and Chernyi in

Ref. 16 ascertain that the conical expansion field adjacent

13
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to the detonation wave is bounded on the downstream side

by a shock wave followed by a compression flow field between
the shock and cone (Fig. 1d). As the cone angle decreases,
the width of the expansion zone increases, while the in-
tensity of the shock wave at first increases and then begins
to decrease until it degenerates into a characteristic.

The flow direction on this characteristic is parallel to

the axis of symmetry. An isentropic compression then

occurs between the characteristic and the cone surface.

When the cone angle is decreased still further the amount

of compression is reduced until at zero cone angle it dis-
appears entirely and the region behind the conical expansion
region is uniform and parallel to the axis of symmetry.

For a cone, the detonative flow in Fig. 1lc bears
a close relationship to the adiabatic flow of Fig. la as
now will be demonstrated.

If, in an adiabatic flow with a given cone angle,
normalized cone-surface velocity u;, and specific heat ratio,
the normalized governing differential equation (see Eq. (1))
is integrated forward of the cone, ignoring the upstream
boundary condition, an upper bound to the extent of the

conical-flow field is found to occur at the singular

14
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discontinuity1 surface, Py shown in Fig. la (Ref. 25).

This singular behavior in the differential equation occurs

at v = a, which is identical to the Chapman-Jouguet condition
for diabatic flow. Therefore, when the detonation in Fig. 1lc
is a C-J detonation (wD -~ mJ), the flows in the bounded
regions (¢SE: P > ¢B) and (wJ.z o2 ¢B) of Figs. la and 1lc
respectively are identical for a specified cone angle,
normalized cone~-surface velocity, and specific heat ratio.

It is well known (Ref. 23) that for adiabatic cone flow

there exists no uniform upstream flow that can be matched

to the conical flow region bounded by the solid cone and

the singular discontinuity surface. However, for a diabatic
flow with known values of the specific heats on both sides

of the exothermic discontinuity, it is possible, for cone

angles less than o , to find a uniform upstream flow
max

having a Mach number and total temperature compatible with
the existence of a Chapman-Jouguet exothermic discontinuity
at the singular surface. Furthermore for any assumed wave
angle op’ less than wJ but greater than Pgo it is possible

to match that portion of the foregoing conical region

1Also called the "1limit line" (Ref. 23) or "limit cone"
(Ref. 24). Ref. 25 calls this discontinuity an "outer"
discontinuity, since there exists also an "inner'" dis-
continuity in the interior of the cone. This distinction
will not be made herein since the "inner"discontinuity

is not pertinent to the present problem.

15
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bounded by ®p and ?5 to a uniform free stream having a
Mach number and total temperature compatible with an oblique
detonation of inclination wD.

In view of the significant role played by the
conical field bounded by a singular discontinuity and a
solid cone it is convenient to refer to such a field as a
unit conical field, or unit field (since v/a varies from
0 to 1.0). A unit field is uniquely defined by specifying

* *
®g: Ugs and y or Pgs U and y.

s’

One of the purposes of this paper is to derive
approxiiate relations for the unit conical field from which
the detonative flows of Fig. lc can be obtained. This has
been done by developing a solution valid in the region of
the singular discontinuity and one valid in the region of
the cone surface and joining the two together at an inter-
mediate location. The solution valid near the singular
discontinuity provides also the initial field just downstream
of the C-J detonation in the detonation-shock flow shown in
Fig. 1d.

The approach taken in obtaining the diabatic
conical flow fields considered herein is as follows.

For the shock-deflagration case, the free-stream
Mach number and the adiabatic shock angle are specified.

The corresponding adiabatic flow downstream of the shock is

16
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obtained using one of the several approximate methods avail-
able in the literature. The inclination of the deflagration
is then taken such that the desired upstream normal Mach
number component is obtained ahead of the deflagration.

For a given heat release the flow field downstream of the
deflagration and the corresponding wedge or cone angle is
then determined by the approximate method given herein in
the next section.

For the detonation case, the free-stream Mach
number, all the specific heats, and the C-J detonation wave
angle are specified. The corresponding cone angle is then
determined by the approximate method given herein. That
portion of the unit field bounded by the C-J wave angle and
the adiabatic shock angle then may be used to determine the
upstream Mach number and total temperature corresponding to
various strong detonation wave angles for fixed values of
the cone angle, normalized cone-surface velocity, and unit-
field specific heat ratio.

To the best of the writer's knowledge the case of
a strong detonation on a wedge (Fig. 1lc) is the only one of
the reactive cases shown in Fig. 1 to have been observed
experimentally (Ref. 6)., An isolated attempt.in Ref. 4 to

produce a detonative reaction on a cone was unsuccessful.

17
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It is not known whether the deflagration case
shown in Fig. 1lb can be produced in the laboratory. Aside
from the uncertainties of ignition 1and burning, the fluid
dynamic aspects of the flow are somewhat restrictive with
regard to laboratory experiments. As will be seen later,
for plausible flame speeds and heat releases, the conical
flow downstream of the deflagration is partially subsonic2
for a fairly wide range of free-stream Mach numbers and cone
angles. Such a flow, although theoretically acceptable for
a semi-infinite body, cannot be attained in the laboratory
because of practical considerations limiting the test model
to a finite length. The existence of a subsonic region on
a finite-length conical model results in the destruction of
the conical flow as a consequence of the upstream propaga-
tion of downstream disturbances.

Assuming that a shock-deflagration flow (completely
supersonic conical field) could be experimentally established,
it presumably could be used to study (in a wind tunnel, say)

the transition from deflagration to detonation by systematic

1An ignition system is necessary.

2Partially subsonic conical-flow regions exist also for the
detonation and detonation-shock cases. In the detonation
case (which is the one of principal interest here), however,
the part of the flow spectrum for which this occurs is
extremely small (see Fig. 13) for weakly-inclined detonations,

18
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variations in the free-stream composition and aerothermo-
dynamic conditions.
ANALYSIS
GOVERNING DIFFERENTIAL EQUATION

The governing differential equation for non-linear
conical flow, normalized with respect to the maximum speed,

c, is (Ref. 25),

<v*2 - a*2><d2 u*/dcpz> - za."‘2 (2 u* - v* cot (p> - u* v"‘z2 (1)
where
v du*/dw (2)
and
a"‘2 - T <1 - u*2 - v*2> 3)

THE UNIT CONICAL FLOW FIELD
The OQuter Solution
If it is assumed that the right hand side of Eq. (1)

*
is not zero at ¢ = ws, an expansion for u which will account

for the singular behavior1 and the boundary condition at Pg is

* * * 2 3 4 5 6
u = u o+ oag z° + 03 z° ¢+ C4 Z° + Cg Z" + C6 Z 4 ~-- (4)

1 Terms to be at least order of z3 in u* must be retained to
include the singular behavior.

19
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from which

*

* 3 2 5 3 4
v =a ¢+ 2 C3 Z + 2 C4 z° + 3 05 z

+3C 2 + --- (3)

where

and, from Eq. (3),

. (g_;_.}) (1 - u:2> ()

with

—

+ (o - q>)2 <1.0 (7

Substituting Eqs. (4) and (5) in Eq. (1), following
some long and tedious algebraic manipulations, the relations

for the coefficients in Eq. (4) are found to be
1

+ * * *| 2
03 - - [Eus -k as) a;} ///;1

* *
C4 - 02 us + 03 k as

2 2
* * % 2 x
05 = <Q4 us + 05 k us as + 06 k as 2/4%

20
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2 2 2 2
* * * * * *
Ce = <n.7us +08°‘s>us+<09us -nsas>kas

MU e ug a;2 + 0y 323 c3
Relations for the omega parameters 0y 02, etc., which
are functions of y, are given in Appendix C. Numerical
values are listed in Table I for y = 1.2, 1.3, 1.4, and
1.405%,
For a compression flow the minus sign is selected
in the expression for C3 whereas for an expanding flow the

plus sign is chosen.
The Inner Solution

Since v is zero at the cone surface, a reasonable

approximation in the vicinity of the cone is

(v*7a*) < 1.0 (8)

Utilization of the approximation of Eq. (8) in Eq. (1) results

in the simplification of the governing differential equation
to

d2 uf//dq;2 + cot @ (duf/dm) + 2 W =0 (9)

1Value used in Ref, 25,

21
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When Eq. (9) is expressed in terms of cos ¢ as an independent
variable, it may be recognized as Legendre's differential
equation of degree one.

The general solution to Eq. (9) is

u® = 4 cos © + (B/2) cos 9 log (%—{}%%%%%) - B (10)

from which

v¥ = A sin o + (B/2) sin ¢ log (%—;-%%E—%) + B cot o (11)

and the constants A and B are determined at the juncture of

the inner and outer solutions.

Equation (9) is frequently used in the literature
to obtain an approximate solution for an adiabatic flow about

a cone in supersonic or hypersonic main stream.
Joining of the Outer and Inner Solutions

In view of the restrictions of Eqs. (7) and (8)

it is appropriate to join the inner and outer solutions at

1

(Y =(50 - )

22
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Substituting Eq. (12) in Eq. (5), there is obtained

1 1
y) * 3 2
(ws - mT) =ag t3 Cs <¢s - qDT) + 2 C4 (ws - QT)

3
5

+3 C5<¢s - mT>2 + 3 Cg (cps - cp,r)z + == (13)
In general Eq. (13) must be solved for Prp by trial and error.
If terms containing powers of (ms - wT) greater than unity
are negligible an analytic solution is obtained.
Once Prp is known, the coefficients A and B are found
by equating Eqs. (4) and (10) and Eqs. (5) and (11) at o = P

and solving the resulting equations. This procedure yields
B = si * @m0, u) * (oo, us) si (14)
San v CDT’q)s’us cos QT-u ‘I’T,CPS,US an)vr

* * 1l + cos mT
u (CDT;‘PS,US) - B |(1/2) cos Prp log T—_m -1

Cos Oy (15)

A=

* * * *
where u (wT, ws,us) and v (mT; ws,us) are obtained from
Eqs. (4) and (5).

From the condition v; = 0, and Eq. (11), the relation

for determining the cone angle is found to be

l +coso cot @
1 B B _ A
2 log | v— cos g + sin g -<§> (16)

23
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Equation (16) must be solved by trial and error for the value
of pp corresponding to a given value of (-A/B). The plot
in Fig. 4 is convenient for ascertaining a first approxi-
mation to LY from which a more accurate value may be
obtained, if so desired, by trial and error,
COMPARISON OF APPROXIMATE AND "EXACT"
UNIT CONICAL FLOW FIELDS

It is desirable, of course, to verify the accuracy
of the approximate unit field solution by comparing it with
an exact solution. Apparently the only exact calculations
performed for the cémplete unit field are those reported in
Ref, 251. Unfortunately Ref. 25 records2 P without giving
the corresponding values of u; or v: required for the present
purpose3. Examination of Table VI in Ref. 25, however,
reveals that (ws - ws) is generally less than 0.2 radians

*
for a wide range of parameters. This suggests that u can

1The investigators in Ref. 25 performed these calculations
principally as a matter of mathematical interest since they
considered the singular discontinuity to be without physical
significance.

2Sec Table VI and Diagram No. 8 in Ref. 25.

3An inquiry to MIT regarding the possibility of obtaining the
values of u; or v: ylielded negative results.

24



The Johns

Hophing University

APPLIED PHYSIOS LABORATORY

Silver Sgring, Marylond

be developed in a series expansion in powers of (¢ - Qs)
from which u; can be determined from the known value of Vg
given in Ref. 25. The appropriate expressions for this
purpose are derived in Appendix D. This procedure should
give a reasonably good value for u:. However, derivatives
of u* will be less accurate near 9, as a consequence of the
singular behavior at Pg which is not accounted for in the
series expansion. For this reason v; is calculated from
Eq. (3)1 rather than from the derivative of the series for
u*.

Exact unit-field solutions also can be obtained by
the more laborious process of extending the flow fields
of Ref., 25 forward of the shock position by means of a
numerical integration procedure. Using the Runge-Kutta
integration technique, one such calculation has been per-
formed as a check on the accuracy of the series expansion
method. In order to provide a relatively severe test, an
example was selected for which (Qs - ws) is moderately large.
The parameters of the example are ¢ = 40 deg., u; = 0.40,
Py = 59.431 deg. and P = 68.555 deg. (corresponding to the
flow field on p. 429 of Ref. 25). Values of ws = 68.556 deg.
and u: = 0.30969 were obtained from the Runge-Kutta inte-

gration. The series expansion method gave a value of

%
us = 0.31050 for the retention of terms in the series to

%
1Recalling that ag = v:.
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order (¢ - ¢s)2, and a value of u; = 0.,31017 for retention
of terms to order (¢ - ws)a. It can be seen from these
comparisons that the series expansion method predicts
u; rather well, It can be anticipated that in general the
agreement will be better than in the example for smaller
values of (ms - ws) and poorer for larger values.

"Exact" values of u; used in subsequent comparisons
are based on the retention of terms to the order of (¢ - vs)z
in the series expansion.

Approximate and exact calculations of the flow
field for the foregoing example are shown in Fig. 5. 1In
the approximate calculation the outer solution was calculated
retaining terms to the order of (Qs - @)3 in u*. It is
apparent that the approximate calculation agrees very well
with the exact one.

The results of additional computations comparing
exact and approximate values of the cone semi-apex angle and
the normalized cone-surface velocity for given values of Og
and u; are recorded in Table II. Also given in the table
are, the joining angle Pp for the inner and outer solutions,
and the free-stream Mach number Mo for which the unit field

J
corresponds to a Chapman-~Jouguet detonationl. Note that the

1The free-stream Mach number, Ho , 18 found by substituting
J

the C-J condition in Eq. (29) and solving the resulting

quadratic equation in Moz.
J
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cone~-angle error (¢B - ¢é)/mé generally increases with in-
creasing values of (ms - wé)/ws, and that the error is
generally larger for the smallest cone angle. Note also,
that for a given cone angle, the cone-angle error decreases
with increasing free-stream Chapman-Jouguet Mach number,
The error in the cone-surface velocity is seen to be very
small.

The cone-angle error is within acceptable limits

" for the 30- and 40-degree cones and the 10-degree cone at
C-J Mach numbers greater than 3.0, but is, perhaps, of
marginal acceptability for the 10~degree cone at C-J Mach
numbers of less than 3.0.

The larger cone angles are of greater interest
for detonation experiments since their stronger shocks are
more conducive to producing a detonation.

Approximate and exact calculations of the flow

field for Example VI in Table II are shown in Fig. 6.
THE DETONATION FLOW FIELD

The flow field under consideration is shown in
Fig. 1lc, with the subscript "0" denoting free-stream
conditions and the subscript 52" denoting conditions in
the field between the exothermic discontinuity and the cone.
As previously noted, it is assumed that uo, cpo,

c._,¢c. ., cC

, and ¢, are known.
o Py J

Vo
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Consider first the determination of the tangential
velocity component downstream of the Chapman-Jouguet wave.
From the condition of constancy of the tangential velocity
component across the wave there is obtained the relation
-k

uy = uo (cos cpJ)(ao/cz)J (17)

where (ao/cz) may be shown to be given by
J

1
RN P REATE AT <3 ’ (18)
2 / 72 K; "'2 3 T o

with (70/72) obtained from Eq. (Al16) as

-]

w'lo

J

J
T cp
?‘2 =21+ c_QTr" (I) (19)
2 P p.'o T/o
J \ 2 o J
where, from Eq. (B3)
-1 -1 2
Q =12 ¥2 sin _ 2|22 _ T2
O 2\ 2 5 || ?g 7. -1" 7
P, © 79 -1 o o
J
y 2
+ ;_2_ _2__12 (20)
o lo sin oy
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and

Y. - 1
(T/'T)O'l-!- —0—2——':

-k =%
With uy and wJ known, °B and u

B May be determined

by means of the unit field solution.
By manipulating Eg. (3), which is valid throughout

field 2, the surface Mach number is easily shown to be given

by
-1
=2 2 a2 ) -2
Vg = 5——T1 Y - up

The corresponding surface pressure is

71

E..B_- 1 E 1+__2_72-1-l§
Py tp:!)o Po J
\
where (p/P)o is given by Eq. (A19) with "o replacing M, and
(3/?0) is obtained by specializing Eq. (Al17) to the C-J
J

condition and replacing P and p by Po and P, respectively.

From the aforementioned unit-field solution, values
of ;; and ;; corresponding to an arbitrarily assumed value of
¢p are readily found. The corresponding values of lo and

(Q/cp To) are then determined as follows. From the condition
o

of constancy of the tangential velocity component across the
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detonation wave, and from relations for a non-Chapman~Jouguet
detonation analogous to those of Eqs. (18), (19) and (20), it
may be shown that

9 1

w2 2 fay __.2 2
ro uo sin ?p (— ) csc” op - cot °D

% {:———T— + 1| =0 (24)
where, from Eq. (AS5)
(Q/cpoTo> - fl ro Iﬁ sin2 op + fz -1 (25)
with
. G+ D) <;>2 =\ (rg -1 26)
- -] + Yol =) - ——a
rof 7 1 ;)
f, = = — 1/l = (27)
27 7\ 7g - <? D
and
- v/c
% = cot ?pl = 2 (28)
v D u/02
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Solving Eqs. (24) and (25) for Iﬁ, there is obtained

2 "‘1

2 cot” 9y 2

Ho - f rO sin QD —(-;/—c—)-g - CS8C (pD - fl (29)
2

The corresponding heat release is found by substituting
Eq. (29) in Eq. (25). Obviously ¢, must be restricted to
th__>_ 9p > Pg-

The surface Mach number as given by Eq. (22) is

unchanged. The surface pressure is
—72
- y. =1
BE - T’;bT' P 1+ Zzu:—i i: 72 (30)
Po P/¥o po D

Where (p/P)o is given by Eq. (Al19) with Io replacing M, and
(5/Po) is given by Eq. (Al7) applied to a detonation, with
D
P, and p_ replacing P and p.
The error in the approximate detonation field

calculation is, of course, of the same order as the unit-

field approximation upon which it is based.
THE DETONATION-SHOCK FLOW FIELD

It is not the purpose here to treat this flow field
(Fig. 1d) in any detail. The initial portion of the expanding

flow downstream of the Chapman-Jouguet wave may be obtained by
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selecting the plus sign in the expression for C3 in the outer

solution of the unit field.
THE SHOCK~DEFLAGRATION FLOW FIELD

The treatment of this field requires approximations
for the adiabatic portion of the field, region 1 in Fig. 1b,
and the diabatic portion, region 2 in Fig. 1lb. There are a
wide variety of approximations available in the literature
(see, for example, Refs. 26 through 31) for adiabatic cone
flow. It is worth noting that for most of these the accuracy
of the approximation increases with increasing free-stream
Mach number (see Ref. 30). The unit-field solution presented
herein also may be used for calculation of the adiabatic
field.

If the shock-deflagration flow is confined to
situations in which the normal-component Mach number ahead
of the flame is of the order of that occurring in turbulent
and laminar flames (say < 0.10) the diabatic portion of the
field in Fig. 1b may be approximated by the Legendre-type
solution used in the inner portion of the unit field.

For known velocity components just downstream of
the deflagration, a Legendre-type solution for the region 2
in Fig. 1b yields

o = 2 cos o + (B/2) cos o log (%—;—%gg—%) -B (31)
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=% = l +cos ¢
v A sin o + (B/2) sin o log<-r:—c6?-5>+ﬁcotq> (32)
where
E = sin 0. (v cos 9, - 5. sin o) (33)
F ''F F F F
- - 1 + cos wr
- up - B |(1/2) cos g log I_:_EBE_E; -1
= o8 9p (34)
The cone angle corresponding to a specified deflagra-
tion (hence, known values of A and §) may be found by means
of Eq. (16) with A and B replacing A and B.
The surface Mach number is given by Eq. (22).
The corresponding surface pressure is
—72
Pp 1 (P P ra . 1g2\72-1
oo \p) \2) (Lt ¥ (35
o o °/g \P/y

where (?/PO) is obtained from oblique shock relations (see
S

e.g. Ref. 32), (p/P ) is given by Eq. (A19) with M  replacing

M, and (P/P), is given by Eq. (Al17) applied to a deflagration.
F

SOME PARAMETRIC CURVES

A limited number of parametric curves of the

properties of some supersonic flows with oblique discontinuities
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are presented herein in Figs. 7 through 12. These curves are
not intended to be comprehensive; such a goal is beyond the
scope of this work. Nor are they intended to be the direct
result of applying the foregoing approximations, since, where
possible, existing tabulated fields are used in part. The
purpose is simply one of illustrating some trends and magnitudes
for parametric values within an approximate range of possible
interest.

Figures 7 and 8 present curves which are plots of
Eqs. (A5), (A8), (Al12) and (Al4), or combinations thereof.
These curves, along with the remaining equations of the
collection (A9) through (Al9), permit the determination of
the flow properties across oblique deflagrations for
normal-component Mach numbers ranging in value from 0.0
to 0,10, at a constant specific heat ratio of 1.4

Some flow properties for the shock-deflagration
regime illustrated in Fig. 1b are given in Figs. 9 and 10
for cone flows and in Figs. 11 and 12 for wedge flows for
a constant specific heat ratio of 1.4, free-stream Mach
numbers of 2.0, 4.0, and 6.0, flame normal-component Mach
numbers of 0.040 and 0.80, and identical adiabatic shock
angles for the cone and wedge cases.

Curves of the body semi-apex angle as a function
of the normal-component velocity ratio across the flame, for

constant values of specific heat ratio, free-stream Mach
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number, shock angle, and flame normal-component Mach number
are shown in Figs. 9 and 11 respectively for cones and
wedges. The flame inclination angles are also indicated

ou the figures. Shown in Figs. 10 and 11 are the associated
cone- and wedge-surface Mach numbers from which the surface
pressure may be calculated by means of Eq. (35). The cor-
responding heat release parameter is ascertainable from

Fig. 7.

The adiabatic portion of the cone shock-deflagration
flow field required in the construction of the curves in Figs.
9 through 12 was obtained from the tables of Ref. 33. The
flame inclination corresponding to a preassigned stream Mach
number, shock-wave angle, and flame normal-component Mach
number was found by interpolation in the table of Ref. 33.
The cone angle corresponding to a given normal-component
velocity ratio across the flame (Fig. 9) was then determined
by means of a Legendre-type solution.

The construction of the wedge-flow curves in
Figs. 11 and 12 involved a rather straight forward applica-
tion of the oblique shock relations (Ref. 32) and the
appropriate equations in Appendix A.

An important point worth noting with regard to
Figs. 10 and 12 is the fairly large portion of the parametric

spectrum for which the body-surface Mach number is subsonic.
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This indicates that the conical flow downstream of the de-
flagration is partially subsonic for a fairly wide range of
free-stream Mach numbers and cone angles. As previously
noted, such a flow cannot be attained in the laboratory
since on a finite-length model the conical flow is destroyed
by the upstream propagation of downstream disturbances in
the subsonic field. 1In experiments aimed at attaining a
shock-deflagration type of flow, it is therefore necessary
to constrain the parameters to values for which the flow is
completely supersonic downstream of the deflagration. 1In
this regard it is observed from Figs. 10 and 12 that the
parametric spectrum for which the flow downstream of the
deflagration is completely supersonic increases in range
with increasing free-stream Mach number.

For cone flow, curves of the Chapman-Jouguet wave
angle as a function of free-stream Mach number for various
cone angles and a constant specific-heat ratio of 1.405
are shown in Fig. 13 along with the corresponding adiabatic
shock-wave angles. The detonation curves were obtained by
extending the flow fields given in Ref. 25 forward to the
known singular discontinuity surface of Ref. 25 by means
of the series expansion method described in the section
"Comparison of Approximate and Exact Unit Conical Flow
Fields." The previously described similarities in the

characteristics of the detonation and adiabatic shock waves
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are readily apparent in the figure. The condition for
which sonic velocity occurs at the cone surface is indi-
cated by the circular and triangular symbols respectively
for detonation and adiabatic shock waves. The corresponding

* *
cone angles are ®g and ?g - As noted on the figure, the
J o

surface Mach number is subsonic for detonation wave angles
greater than the wave angle for a sonic surface velocity,
and supersonic for lesser wave angles.

Since a sonic surface velocity is the limiting
condition for the attainment of conical flow on a finite
length model in an experimental facility, an "a priori"

knowledge of mB* is important to the selection of a test
J

model for which the semi-apex angle should be as large
as possible to promote detonation without destroying the

x*
conical flow. The adiabatic cone angle ®g is not satis-
o

factory for this purpose since it is generally larger than

J

for a free-stream Mach number of 2.2, whereas the correspond-

%
og - Note on Fig. 13, for example, that wB: = 30 degrees

%*
ing adiabatic-flow cone angle wB at the same Mach number
o

is found to be 39.1 degrees (Ref. 32).
It is well known for adiabatic cone flow that
there exists an absolute maximum cone angle above which a

conical flow region cannot exist regardless of the free-stream
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Mach number. For a specific heat ratio of 1.405 the value
of this maximum angle is known to be 57.6 degrees (Ref.
25). The analogous absolute maximum cone angle for a

C-J detonation flow was found herein to be 35.8 (¥ 0.2)

degrees.

CONCLUDING REMARKS

Approximate relations haée been developed for
calculating cone flow fields of the shock-deflagration and
detonation types with attached adiabatic and diabatic dis-
continuities.

The appropriateness of the Lengendre-type approxima-
tion used for the shock-deflagration flow has been demonstrated
various places in the literature in applications to adiabatic
cone flow., The appropriateness of the present approximate
method for detonative flow fields has been verified herein
where it is shown that the error decreases with increasing
cone angle and increasing free-stream Chapman-Jouguet Mach
number,

It is believed that the analytical relations of
this paper will be useful in the design and interpretation
of cone-flow supersonic combustion experiments since there
are no flow field tables available for the specific-heat

ratios and conditions likely to be encountered in experiment,
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and hand numerical integration of the governing differential
equation involves a greater effort than does the present
method. The availability to the researcher of a digital
computer, of course, circumvents the use of the present
method. Such facilities are not always available, however,
and in any event the present method serves as a useful
complement to machine calculation as well as providing use-
ful relations for the machine program in the vicinity of

the singular discontinuity.
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APPENDIX A

Single Oblique Exothermic Discontinuity

Consider the deflagration shown in Fig. 2 to be
any general exothermic discontipuity (detonation or de-
flagration) separating two conical flow fields. In view
of the assumption of a perfect gas in the separate regions,
the following thermodynamic relations and definitions apply
in a given region: p = pRT, R = Cp = Cy 32 = yRT = »p/p,
and y = cp/cv.

With reference to Fig. 2, the equations of con-
servation of mass, normal momentum, tangential momentum, and
energy across the discontinuity (denoted by the subscript d)

are respectively,

B Vg = 9g Vg (A1)

Ba * Fa Va = Bq * Pa Va (h2)

Uy = Uy (A3)

1 72 +c. T, +Q=2 ;2 +c_ T (a4)
2 Ya * %, "a 2 ‘a * %p, "d
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The foregoing derived forms of the momentum and energy
equations are obtained from the basic forms through the use

of the conservation of mass relation in the basic momentum
equations and the conservation of mass and tangential momentum

in the basic energy equation.

The equation of state, the relations Ed - Vd/id

and cp = ¥y R/(y - 1) and Eqs. (Al), (A2) and (A4) may be

combined to give 4

@ .z2(n-? (72"1)(3) <$ 1
- =] + =] ==(ry ~1)
e . alrg-1 2 v 72\3 272
p, d d d
Yo |7 1\ /=
)
d

Equation (A5) may be solved for (;/V)d. The result

is
7o _2 %
- -t rg Myt F
v 4! -
= = —3 (A6a)
v /4 (72 + 1) my
where
. _<72 (rg =7y + )| 2
=\ T G, - D "4
71 71 1°
- 2 m (A6b)
Pl d
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and

iy = W, sin (o, - B,) (A7)

Discussion of the consequences of the selection of
a specific sign preceding the radical in Eeo. (A6a) is relegated
to Appendix B.

Equation (A3) and the velocity vector diagram, Fig.
2, yield the following result for the change in flow direction

across the discontinuity
tan (¢d - ed)/tan (wd - Ed) - (v/V)d (A8)

Equations (A6) and (A8) are the governing relations for an
oblique diabatic discontinuity. For known values of ﬁd, ¢d’

®,, Qc_T,, ., and y, the foregoing equations may be solved
d P, d 1 2

for (;/V)d and 6d‘ In some problems, different combinations
of these parameters may be specified.

The density, static-pressure, static-temperature,
sonic speed, and normal Mach-number ratios across the dis-
continuity may be expressed in terms of (;/V)d. Relations
for the preceding quantities, derivable from Eqs. (Al) and

(A2) and the basi: thermodynamic relations and definitions are
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F/0)y = (V/9)4 (49)

- 2 [ d

(o/P)g =1 - r; my [Ey/V)d - E] (A10)

(T/Py = R /R /) (B/B) 4 (A11)
1

(a/m), = [5?2/71)(;/V)d(5/5;;}2 (A12)
1

(m/m) ; = [L(__rl/rz) /¥ / (S/B);\E (A13)

where ('5/3)d in Eqs. (Al11), (A12), (A13), is given by Eq. (A10).

The resultant-velocity ratio, the resultant Mach-
number ratio, the stagnation-temperature ratio, and the
stagnation-pressure ratio depend upon vector quantities.
Utilization of Fig. 2, Eqs. (A3) and (A4) and basic defini-

tions yield

(V/V)d = CcoS (wd - E)d/cos (md - B)d (Al14)
(ﬁ/ﬁ)d = (?/V)d(syz)d (A15)
o\ °p
2 1 Q T
<T1 ) sz ' cp1T> <T)d
d
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BBy = GB/F)y B/ B/P)y

where
— h
(1/m) = |1+ L2 W

-1

71

(-]

r‘lu

+
2

—
(p/P) = |1

yield the required quantities in Eqs. (Al6) and (Al7) by
appropriate substitution of ﬁd and id for M.

A wide variety of alternate forms of the preceding
relations may be obtained by suitable manipulations.

For specified values of ryr Yo and Q/c Td,
P

the flow quantity ratios given by Eqs. (A6) and Eqs. (A9)
through (Al13) are functions of the normal component of the
upstream Mach number in a manner analogous to the same well-
known property for an oblique shock wave (adiabatic dis-
continuity). The stagnation pressure ratio, however, does
not follow this analogous behavior in the diabatic case.
Equations (A6), (Al10), and (Al3) are analyzed in
Appendix B for the purposes of delineating the boundaries of

the various normal-component flow regimes and classifying

them according to Jouguet's rule.

44
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APPENDIX B

Delineation of the Normal-Component Flow Regimes for
an Oblique Exothermic Discontinuity

For the discussion in this appendix it is convenient

to rewrite Eq. (A6), introducing a special notation, as follows

1
72 2 Fi
< ;> ;T e (Bla)
— - a
= =)
v d(z) (7’2 + 1) md
where
2
F = ig_ﬁz -2 (72'71)(724'1) Ez
vy, d ryy ry - D d
2
o [7g =1
-2m2 |22 Q (B1b)

d 7, -1 cple
and the sign of the quantity (¥) in the subscript of (;/V)d
is taken to agree with the sign selected ahead of the radical.
Quantities which are functions of (;/V)d also carry the same
subscript notation.

From Eq. (Bl) it is seen that (;/V)d is double
valued for given positive values of F and m,, that there are

two possible real values of m, corresponding to given positive

d

values of F and Q/cp Td’ and there are no real solutions for
o
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F< 0. It is apparent therefore that the factors crucial
to the delineation of the various normal-component flow
regimes by means of Eq. (Bl) are the magnitude of the
function F and the choice of sign preceding the radical.
For F = 0, Eq. (Bla) becomes
(ro/rP (1 + 1y ﬁg)
- (B2)

-
J (72 +1) my

<ii<

Substitution of Eq. (B2) in Eqs. (A10) and (Al13) results in

q ™ 1.0; the Chapman-Jouguet condition.

From the expression for the derivative of (;/V)d
with respect to Ed it is easy to show that the C-J condition
(F = 0) is a singular point of Eq. (Bl) for a constant Q.
It is also easy to show, by means of Eq. (AS5), that the C-J
condition corresponds to the maximum heat release for a given
value of (;/V)d.

The heat release corresponding to the Chapman-Jouguet

condition is given by

2
-1 b

Q 1”71 -2 2\ 1
- = m. - 2C +|—= (B3)

cpl T 2 73 -1 d 7 (71) ig

J
where

C — B4
r " T T o - D (B4)
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Or, alternatively, the normal Mach-number component yielding
the Chapman~-Jouguet condition for a given heat release is

1

2
IECY + c? - (rz/rl)z—l (5)

I+

where

2
72'1 Q
Q Yl'T cp]__T-
\

(B6)

and the sign of the quantity Ei]in the subscript of'ﬁJ is
taken to agree with the sign used ahead of the radical.
Quantities which are functions of EJ also carry the same
subscript notation. Note that the parenthetical subscript
notation (¥) pertains to Eq. (Bl) and quantities derived
therefrom, whereas the bracketed subscript notation [E] per-
tains to Eq. (B5) and correspondingly derived quantities.
The effect of sign selection in Eq. (Bl) upon the normal
component of the downstream Mach number is now examined.
Since (;/B)d is a positive quantity*, and (;/V)d(+0 >
(;/V)d(_), it follows from Eq. (A10) that (E/B)d(+0 <
(;/B)d(_). Eq. (Al3) then yields ﬁd (+) 2 ;d(-)' Since the
C-J condition is the boundary between the plus and minus
solutions of Eq. (Bla) there is obtained

Mgy £ 1.0 < myg s (B7)

*The ratio (5/'5)d is positive for (;/V)d £(1 + ——%:r
71 Mg
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That is, selection of the minus (-) sign in Eq. (Bla) gives
a subsonic normal component for the downstream Mach number,
whereas selection of the plus (+) sign gives a supersonic
normal component for the downstream Mach number.

Two pairs of curves given by Eq. (Bl) for constant
values of Q, say QI and QII’ (QII > QI) are illustrated in
Fig. 3 for ry > 7y The locus of the C-J points given by
Eq. (B2) is shown by the curve ABC. It is obvious (as noted
on the figure) that regions above the C-J curve correspond
to the selection of the plus (+) sign in Eq. (Bla) and the
regions below the curve correspond to the selection of the
minus (-) sign.

As previously noted there are no real solutions
to Eq. (Bla) for F < 0. Applying the condition F < 0 to
Eq. (Blb), the normal-component Mach number range for which
there are no solutions to Eq. (Bla) for specified values

of y,, 7y, and Q/cpl Th is found to be

o [ n2 < ﬁ§[+-] (B8)
where EJ E‘] and EJ[+] are given by Eq. (B3). The 'n'uJE_] con-

ditions for Q = Q. and QII occur at the points J' and j'

I
respectively in Fig. 3. The corresponding EJ[}] conditions

occur at the points J and j in the figure.

-
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From Eqs. (B7) and (B8) it is apparent that there
(0)

exists a heat-release quantity Q at and below which real

solutions to Eq. (Bl) are obtained for all real values of
my. This occurs when mJ[;] - mJ[}j’ for which the term under
the radical in Eq. (B5) becomes zero. The corresponding values

(Q/cp Td)(O), EJ(O), and (;/V)J(O) are easily shown to be

1
(Q/cpl’l‘d)(o) = (ry = 7r3)ry (rg- 1) (B9)
_(® 3
m,y - (72/71) (B10)
G =10 (B11)

The velocity ratio curves are given by

-><0) e 1

d(+) g Ed 5 EJ(O) (B12)

<] l<

2
/2 0 2yy/y) + lrg - D By
\¥ Jac-) (rg + 1) W2
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(

=\ (0)
<-‘1\, - 1.0

V/d(-) J

<l i<y

2
>‘°) 2 7y/ry + (rg - 1) B,

(ro + 1) e
d(+) 2 d 0)
( iid < 'ﬁJ (B13)

Curves for Q = Q(o) are shown in PFig. 3, Point B

in the figure corresponds to E§0)'

If the parameters 72/71, CY' and CQ are of order
unity, the following asymptotic forms for Eq. (Bl) are readily

obtained.

/-\ (C +

2 +r - (B14)

SALTC] P "2/71

P/*' o Yo'y (C._ +CL)

;;\ - '——12 _ r + 44— (B15)
\\.V/d(_) — _}0 72 (72/71)
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(¥ - 1.0 (B16)
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-7- _‘ 7 -1

Y -2 (B17)
\7 J 7g * 1

_-\ d(-) ﬁd—>“
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Finally, the limiting boundaries for the regimes of
exothermic discontinuities are delineated by the adiabatic
condition Q = 0. For the adiabatic condition, note from
Eq. (Bl) that F is always positive and greater than zero,
providing 713> 7y Therefore, for Q = 0 and 7&'> £y real
solutions to Eq. (Bl) are obtained for all real values of id'

In Fig. 3 the endothermic regions are indicated by
the hatched areas. The shaded areas delineate regions of weak
deflagrations and detonations, while the unshaded areas
represent strong deflagrations and detonations. The bounding
adiabatic curves, Q = 0, are noted.

Although the material presented in this appendix

is not new in its entirety, it does cover the subject in a

slightly more generalized manner than heretofore.
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APPENDIX C

The 099§a Functions

z
3
E(l +T)

@]
]

g = =-(5)(1 + 2r)/F,
03 - -(1 - 4r)/F1
2
04 = (17 - 10T + 8T )/F,
Ng = (41 + 32r - 16r2)/r2
2
Qg = (-58 - 22r + 8r°)/F,
0, = (-320 -2,280r -2401"2 + 3zor3)/rh
0g = (-5,040 -10,4401 -5,4oor2)/r3

fg = (150 + 3,780r -8,640r% -960r°)/¥,

010 = (1,920 -3,240T + 18,0001"2 + 960F3)/F5
nll = (-1,750 + 1,740r —9,120r‘2 - 3201"3)/1"3
where
T =(y - 1)/2 F; =12 (1+71)
2 3
F2 =270 (1 + T) Fh = 72,900 (1 + ")
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APPENDIX D

Conical Flow Field in the Vicinity of an Arbitrary
Non-Singular Conical Ray

Denote the angular position of an arbitrary non-

singular conical ray by P then
* * * 2 3
u =u -V, (@ -9.) +A (0-0)" + A3 (@ - ®,)" + --- (D1)

where (9 - ¢a) is a small quantity. Substitution of (Dl) in
Eqs. (1) through (3) yields

2 2 2

* I *x *
A - 2 ua aa - k va aa - ua va
2(v. - a )
a a
2 2 2
L * * 2 * * *
R 2k a, A2+va I:é(1+r‘)A2+4(1+3r)uaA2+(va - aajﬂ
3 oc ") ,2)
vy -8,
2 2
* * L \2_* l
+v, [;%ua -2k rva(ua+2A2)+k a,
2 2
» *»
6(va -a, )
where
' -
k cot wa.

*
The corresponding v component is found by means

of Eq. (2).
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TABLE I

Numerical Values of the Omega Functions
for Several Specific-Heat Ratios®

y = 1.2 y = 1.3 y = 1.4 y = 1.405
0, 1,5732 1.6086 1.6432 1.6449
Qq -0.45455 -0.47101 -0.48611 -0.48683
Qg -0.045455 -0.028986 -0.013889 -0,013167
Q4 0.049219 0.043912 0.039403 0.039196
Qg 0.13480 0.12726 0.12027 0.11993
Qg -0.18402 -0.17117 -0.15967 -0.15913
Qq -0.0056692 -0.0060097 -0.0062160 -0.0062234
Qg -0.063259 -0.060677 -0.058299 -0.058185
Qg 0.0045413 0.0046842 0.0043877 0.0043640
Q40 0.018314 0.016616 0.015874 0.015857
044 -0.017186 -0.015290 -0.014046 -0.013997

3See Appendix C for omega function relations.
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